Fachgebiet Phytopathologie

Dr. David Scheuring

Contact:
Phytopathology
TU Kaiserslautern
Postfach 3049
D-67653 Kaiserslautern
Deutschland

Office:
Paul-Ehrlich-Straße
Bldg. 22; Room 104

Phone:
+49-631-205-2219

Email:  scheurin[at]rhrk.uni-kl.de

since 2018: Group leader at the University of Kaiserslautern, Germany

2016 - 2018: Research associate, University of Kaiserslautern (Hahn group), Germany

2013 - 2016: Postdoc (DFG Fellowship), BOKU Vienna (Kleine-Vehn group), Austria

2011-2012: Postdoctoral Fellow, University of Heidelberg (Schumacher group), Germany

2007-2011: PhD at University of Heidelberg (Robinson group), Germany

2005/2006: ERASMUS fellowship at the University of Wolverhampton, UK

2001 - 2007: Studies of Biology at the University of Freiburg, Germany

 

Major Research Interest

Cells are the smallest unit of life. Since plants are sessile, intracellular changes in response to a plethora of environmental challenges are fundamental. Over the last centuries, plant behavior in response to biotic (e.g. pathogens) and abiotic stress (e.g. drought, cold) has been studied extensively but many of the underlying molecular and cellular adaptations are not well understood.

My group is interested in cellular adaptations upon changing environmental conditions with an emphasis on organelle organization and vesicle trafficking. We found that the plants largest organelle - the vacuole, is not only directly responsive to hormone treatment but in addition participates in providing a scaffold for successful plant defense against pathogens. Hence, altered vacuolar morphology reflects environmental changes that in turn directly impact on plant growth and development. 

  

Selected Publications

Leisen T, Werner J, Pattar P, Ymeri E, Sommer F, Schroda M, Scheuring D, Hahn M (2022)  Multiple knockout mutants reveal a high redundancy of phytotoxic compounds that determine necrotrophic pathogenesis of Botrytis cinereaPlos Pathogens (accepted)

Trösch R, Ries F, Westrich  LD,  Gao Y, Herkt  C, Hoppstädter J, Heck-Roth J, Mustas M, Scheuring D, Choquet Y, Räschle M, Zoschke R,  Willmund, F (2021) Fast and global reorganization of the chloroplast protein biogenesis network during heat acclimation. Plant Cell, koab317

Valifard M, LeHir R, Müller J, Scheuring D, Neuhaus HE, Pommerrenig B (2021) The vacuolar fructose transporter SWEET17 is critical for Arabidopsis root development and drought tolerance. Plant Phys., kiab436

Hickl D*, Drews F*, Girke C, Zimmer D, Mühlhaus T, Hauth J, Nordström K, Trentmann O, Neuhaus HE, Scheuring D, Fehlmann T, Keller A, Simon M, Möhlmann T (2021) Differential degradation of RNA species by autophagy related pathways in Arabidopsis. J. Exp. Bot., 72, 6867-6881

Minina EA, Scheuring D, Askani J, Krueger F, Schumacher K (2021) Light at the end of the tunnel: FRAP assay reveals that plant vacuoles start as a tubular network. bioRxiv

Niemeyer J, Scheuring D, Oestreicher J, Morgan B, Schroda M (2021) Real-time monitoring of subcellular H2O2 distribution in Chlamydomonas reinhardtiiPlant Cell, koab176

Kaiser S, Eisele S, Scheuring D (2021) Vacuolar occupancy is crucial for cell elongation and growth regardless of the underlying mechanism. Plant Signal. Behav. 16, 8

Klionsky DJ et al. (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 8, 1-382

Hickl D, Scheuring D, Möhlmann T (2021) CTP-Synthase 2 from Arabidopsis thaliana is required for complete embryo development. Front. Plant Sci. 15, 510 doi: 10.3389/fpls.2021.652434

Scheuring D§ and Kleine-Vehn J. (2020). On the discovery of an endomembrane compartment in plants. Proc Natl Acad Sci U S A.doi.org/10.1073/pnas.2006766117

Kaiser S and Scheuring D§. (2020). To lead or to follow: Contribution of the plant vacuole to cell growth. Front. Plant Sci. doi: 10.3389/fpls.2020.00553

Ruano G§ and Scheuring D§. (2020). Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense. Plants. 21, 389

Leisen T, Bietz F, Werner J, Wegner A, Schaffrath U, Scheuring D, Willmund F, Mosbach A, Scalliet G and Hahn, M. (2020). CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors allows highly efficient marker-free and multiple genome editing in Botrytis cinerea. bioRxiv. doi.org/10.1101/2020.01.20.912576

Kaiser S*, Eisa A*, Kleine-Vehn J, Scheuring D§. (2019). NET4 modulates the compactness of vacuoles in Arabidopsis thaliana. Int. J. Mol Sci. 20, 4752, bioRxiv 714774

Müller N, Leroch M, Schumacher J, Zimmer D, Könnel A, Klug K, Leisen T, Scheuring D, Sommer F, Mühlhaus T, Schroda M, and Hahn M. (2018). Investigations on VELVET regulatory mutants confirm the role of host tissue acifidication and secretion of proteins in the pathogenesis of Botrytis cinerea. New Phytol. 219, 1062-1074

Scheuring D, Löfke C, Krüger F, Kittelmann M, Eisa A, Hughes L, Smith RS, Hawes C, Schumacher K and Kleine-Vehn J. (2016). Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc Natl Acad Sci U S A. 113, 452-457

Scheuring D, Schöller M, Kleine-Vehn J and Löfke C (2015). Vacuolar staining methods in plant cells. Methods Mol Biol. 1242, 83-92

Löfke C*, Scheuring D*, Dünser K, Schöller M, Luschnig C and Kleine-Vehn J. (2015). Tricho- and atrichoblast cell files show distinct PIN2 auxin efflux carrier exploitations and are jointly required for defined auxin-dependent root organ growth. J Exp Bot. 66, 5103-5112

Löfke C, Dünser K, Scheuring D and Kleine-Vehn J. (2015). Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife 4, e05868

Scheuring D and Kleine-Vehn J. (2014). Intracellular auxin transport. Springer press:Auxin and Its Role in Plant Development. pp 61-73. DOI: 10.1007/978-3-7091-1526-8_4, Online ISBN: 978-3-7091-1526-8

Viotti C, Krüger F, Krebs M, Neubert C, Fink F, Lupanga U, Scheuring D, Boutté Y, Frescatada-Rosa M, Wolfenstetter S, Sauer N, Hillmer S, Grebe M. and Schumacher K. (2013). The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. Plant Cell. 25, 3434-49

Stierhof YD, Viotti C, Scheuring D, Sturm S and Robinson DG. (2013). Sorting nexins 1 and 2a locate mainly to the TGN. Protoplasma 250, 235-40

Robinson DG, Pimpl P, Scheuring D, Stierhof YD, Sturm S, Viotti C. (2012). Trying to make sense of retromer. Trends Plant Sci. 17, 431-9

Scheuring D*, Künzl F*, Viotti C, San Wan Yan M, Jiang L, Schellmann S., Robinson D.G. and Pimpl P. (2012). Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway. BMC Plant Biol. 12,164

Lerich A, Hillmer S, Langhans M, Scheuring D, van Bentum P and Robinson DG. (2012). ER Import Sites and Their Relationship to ER Exit Sites: A New Model for Bidirectional ER-Golgi Transport in Higher Plants. Front Plant Sci. 2, 143

Scheuring D*, Viotti C*, Krüger F, Künzl F, Sturm S, Bubeck J, Hillmer S, Frigerio L, Robinson D.G, Pimpl P and Schumacher K. (2011). Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell. 23, 3463-81

Robinson DG, Scheuring D, Naramoto S and Friml J. ARF1 Localizes to the Golgi and the Trans-Golgi Network. (2011). Plant Cell 23, 846-9

Shahriari M, Keshavaiah C, Scheuring D, Sabovljevic A, Pimpl P, Hausler R.E, Hulskamp M and Schellmann S. (2010). The AAA-ATPase AtSKD1 contributes to vacuolar maintenance of A. thaliana. Plant J. 64, 71-85

Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG and Pimpl P. (2010). Sorting of plant vacuolar proteins is initiated in the ER. Plant J. 62, 601-14

Bubeck J*, Scheuring D*, Hummel E, Langhans M, Viotti C, Foresti O, Denecke J, Banfield D.K and Robinson D. G. (2008). The syntaxins SYP31 and SYP81 control ER Golgi trafficking in the plant secretory pathway. Traffic 9, 1629-52

* Authors contributed equally

 

§ Corresponding author

Zum Seitenanfang